Quantitative Information Fusion for Hydrological Sciences
Autor Corporativo: | |
---|---|
Otros Autores: | , |
Formato: | eBook |
Lenguaje: | English |
Publicado: |
Berlin, Heidelberg :
Springer Berlin Heidelberg : Imprint: Springer,
2008.
|
Edición: | 1st ed. 2008. |
Colección: | Studies in Computational Intelligence,
79 |
Materias: | |
Acceso en línea: | https://doi.org/10.1007/978-3-540-75384-1 |
Tabla de Contenidos:
- Data Fusion Methods for Integrating Data-driven Hydrological Models
- A New Paradigm for Groundwater Modeling
- Information Fusion using the Kalman Filter based on Karhunen-Loève Decomposition
- Trajectory-Based Methods for Modeling and Characterization
- The Role of Streamline Models for Dynamic Data Assimilation in Petroleum Engineering and Hydrogeology
- Information Fusion in Regularized Inversion of Tomographic Pumping Tests
- Advancing the Use of Satellite Rainfall Datasets for Flood Prediction in Ungauged Basins: The Role of Scale, Hydrologic Process Controls and the Global Precipitation Measurement Mission
- Integrated Methods for Urban Groundwater Management Considering Subsurface Heterogeneity.