|
|
|
|
LEADER |
03148nam a22003375i 4500 |
001 |
000283029 |
005 |
20210510095708.0 |
007 |
cr nn 008mamaa |
008 |
130612s2013 xxu| s |||| 0|eng d |
020 |
|
|
|a 9781627034470
|
024 |
7 |
|
|a 10.1007/978-1-62703-447-0
|2 doi
|
040 |
|
|
|a Sistema de Bibliotecas del Tecnológico de Costa Rica
|
245 |
1 |
0 |
|a Genome-Wide Association Studies and Genomic Prediction /
|c edited by Cedric Gondro, Julius van der Werf, Ben Hayes.
|
250 |
|
|
|a 1st ed. 2013.
|
260 |
# |
# |
|a Totowa, NJ :
|b Humana Press :
|b Imprint: Humana,
|c 2013.
|
300 |
|
|
|a XI, 566 p. 67 illus., 31 illus. in color. :
|b online resource.
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a Methods in Molecular Biology,
|v 1019
|
505 |
0 |
|
|a R for Genome-Wide Association Studies -- Descriptive Statistics of Data: Understanding the Data Set and Phenotypes of Interest -- Designing a Genome-Wide Association Studies (GWAS): Power, Sample Size, and Data Structure -- Managing Large SNP Datasets with SNPpy -- Quality Control for Genome-Wide Association Studies -- Overview of Statistical Methods for Genome-Wide Association Studies (GWAS) -- Statistical Analysis of Genomic Data -- Using PLINK for Genome-Wide Association Studies (GWAS) and Data Analysis -- Genome-Wide Complex Trait Analysis (GCTA): Methods, Data Analyses, and Interpretations -- Bayesian Methods Applied to Genome-Wide Association Studies (GWAS) -- Implementing a QTL Detection Study (GWAS) Using Genomic Prediction Methodology -- Genome-Enabled Prediction Using the BLR (Bayesian Linear Regression) R-Package -- Genomic Best Linear Unbiased Prediction (gBLUP) for the Estimation of Genomic Breeding Values -- Detecting Regions of Homozygosity to Map the Cause of Recessively Inherited Disease -- Use of Ancestral Haplotypes in Genome-Wide Association Studies -- Genotype Phasing in Populations of Closely Related Individuals -- Genotype Imputation to Increase Sample Size in Pedigreed Populations -- Validation of Genome-Wide Association Studies (GWAS) Results -- Detection of Signatures of Selection Using FST -- Association Weight Matrix: A Network-Based Approach Towards Functional Genome-Wide Association Studies -- Mixed Effects Structural Equation Models and Phenotypic Causal Networks -- Epistasis, Complexity, and Multifactor Dimensionality Reduction -- Applications of Multifactor Dimensionality Reduction to Genome-Wide Data Using the R Package 'MDR' -- Higher Order Interactions: Detection of Epistasis Using Machine Learning and Evolutionary Computation -- Incorporating Prior Knowledge to Increase the Power of Genome-Wide Association Studies -- Genomic Selection in Animal Breeding Programs.
|
650 |
|
0 |
|a Bioinformatics.
|
650 |
|
0 |
|a Human genetics.
|
650 |
1 |
4 |
|a Bioinformatics.
|
650 |
2 |
4 |
|a Human Genetics.
|
700 |
1 |
|
|a Gondro, Cedric.
|e editor.
|
700 |
1 |
|
|a van der Werf, Julius.
|e editor.
|
700 |
1 |
|
|a Hayes, Ben.
|e editor.
|
710 |
2 |
|
|a SpringerLink (Online service)
|
773 |
0 |
|
|t Springer eBooks
|
900 |
|
|
|a Libro descargado a ALEPH en bloque (proveniente de proveedor)
|