Notes on Continuum Mechanics /

Detalles Bibliográficos
Autor principal: Chaves, Eduardo WV. (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: eBook
Lenguaje:English
Publicado: Dordrecht : Springer Netherlands : Imprint: Springer, 2013.
Edición:1st ed. 2013.
Colección:Lecture Notes on Numerical Methods in Engineering and Sciences,
Materias:
Tabla de Contenidos:
  • Preface
  • Abbreviations
  • Operators And Symbols
  • Si-Units
  • Introduction
  • 1 Mechanics
  • 2 What Is Continuum Mechanics
  • 3 Scales Of Material Studies
  • 4 The Initial Boundary Value Problem (Ibvp)
  • 1 Tensors
  • 1.1 Introduction
  • 1.2 Algebraic Operations With Vectors
  • 1.3 Coordinate Systems
  • 1.4 Indicial Notation
  • 1.5 Algebraic Operations With Tensors
  • 1.6 The Tensor-Valued Tensor Function
  • 1.7 The Voigt Notation
  • 1.8 Tensor Fields
  • 1.9 Theorems Involving Integrals
  • Appendix A: A Graphical Representation Of A Second-Order Tensor
  • A.1 Projecting A Second-Order Tensor Onto A Particular Direction
  • A.2 Graphical Representation Of An Arbitrary Second-Order Tensor
  • A.3 The Tensor Ellipsoid
  • A.4 Graphical Representation Of The Spherical And Deviatoric Parts
  • 2 Continuum Kinematics
  • 2.1 Introduction
  • 2.2 The Continuous Medium
  • 2.3 Description Of Motion
  • 2.4 The Material Time Derivative
  • 2.5 The Deformation Gradient
  • 2.6 Finite Strain Tensors
  • 2.7 Particular Cases Of Motion
  • 2.8 Polar Decomposition Of F
  • 2.9 Area And Volume Elements Deformation
  • 2.10 Material And Control Domains
  • 2.11 Transport Equations
  • 2.12 Circulation And Vorticity
  • 2.13 Motion Decomposition: Volumetric And Isochoric Motions
  • 2.14 The Small Deformation Regime
  • 2.15 Other Ways To Define Strain
  • 3 Stress
  • 3.1 Introduction
  • 3.2 Forces
  • 3.3 Stress Tensors
  • 4 Objectivity Of Tensors
  • 4.1 Introduction
  • 4.2 The Objectivity Of Tensors
  • 4.3 Tensor Rates
  • 5 The Fundamental Equations Of Continuum Mechanics
  • 5.1 Introduction
  • 5.2 Density
  • 5.3 Flux
  • 5.4 The Reynolds Transport Theorem
  • 5.5 Conservation Law
  • 5.6 The Principle Of Conservation Of Mass. The Mass Continuity Equation
  • 5.7 The Principle Of Conservation Of Linear Momentum. The Equations Of Motion
  • 5.8 The Principle Of Conservation Of Angular Momentum. Symmetry Of The Cauchy Stress Tensor.- 5.9 The Principle Of Conservation Of Energy. The Energy Equation
  • 5.10 The Principle Of Irreversibility. Entropy Inequality
  • 5.11 Fundamental Equations Of Continuum Mechanics
  • 5.12 Flux Problems
  • 5.13 Fluid Flow In Porous Media (Filtration)
  • 5.14 The Convection-Diffusion Equation
  • 5.15 Initial Boundary Value Problem (Ibvp) And Computational Mechanics
  • 6 Introduction To Constitutive Equations
  • 6.1 Introduction
  • 6.2 The Constitutive Principles
  • 6.3 Characterization Of Constitutive Equations For Simple Thermoelastic Materials
  • 6.4 Characterization Of The Constitutive Equations For A Thermoviscoelastic Material
  • 6.5 Some Experimental Evidence
  • 7 Linear Elasticity
  • 7.1 Introduction
  • 7.2 Initial Boundary Value Problem Of Linear Elasticity
  • 7.3 Generalized Hooke’s Law
  • 7.4 The Elasticity Tensor
  • 7.5 Isotropic Materials
  • 7.6 Strain Energy Density
  • 7.7 The Constitutive Law For Orthotropic Material
  • 7.8 Transversely Isotropic Materials
  • 7.9 The Saint-Venant’s And Superposition Principles
  • 7.10 Initial Stress/Strain
  • 7.11 The Navier-Lamé Equations
  • 7.12 Two-Dimensional Elasticity
  • 7.13 The Unidimensional Approach
  • 8 Hyperelasticity
  • 8.1 Introduction
  • 8.2 Constitutive Equations
  • 8.3 Isotropic Hyperelastic Materials.- 8.4 Compressible Materials
  • 8.5 Incompressible Materials
  • 8.6 Examples Of Hyperelastic Models
  •  8.7 Anisotropic Hyperelasticity
  • 9 Plasticity
  • 9.1 Introduction
  • 9.2 The Yield Criterion
  • 9.3 Plasticity Models In Small Deformation Regime (Uniaxial Cases)
  • 9.4 Plasticity In Small Deformation Regime (The Classical Plasticity Theory)
  • 9.5 Plastic Potential Theory
  • 9.6 Plasticity In Large Deformation Regime
  • 9.7 Large-Deformation Plasticity Based On The Multiplicative Decomposition Of The Deformation Gradient
  • 10 Thermoelasticity
  • 10.1 Thermodynamic Potentials
  • 10.2 Thermomechanical Parameters
  • 10.3 Linear Thermoelasticity
  • 10.4 The Decoupled Thermo-Mechanical Problem In A Small Deformation Regime
  • 10.5 The Classical Theory Of Thermoelasticity In Finite Strain (Large Deformation Regime)
  • 10.6 Thermoelasticity Based On The Multiplicative Decomposition Of The Deformation Gradient
  • 10.7 Thermoplasticity In A Small Deformation Regime
  • 11 Damage Mechanics
  • 11.1 Introduction
  • 11.2 The Isotropic Damage Model In A Small Deformation Regime
  • 11.3 The Generalized Isotropic Damage Model
  • 11.4 The Elastoplastic-Damage Model In A Small Deformation Regime
  • 11.5 The Tensile-Compressive Plastic-Damage Model
  • 11.6 Damage In A Large Deformation Regime
  • 12 Introduction To Fluids
  • 12.1 Introduction
  • 12.2 Fluids At Rest And In Motion
  • 12.3 Viscous And Non-Viscous Fluids
  • 12.4 Laminar Turbulent Flow
  • 12.5 Particular Cases
  • 12.6 Newtonian Fluids
  • 12.7 Stress, Dissipated And Recoverable Powers
  • 12.8 The Fundamental Equations For Newtonian Fluids
  • Bibliography
  • Index.