Sampling Theory for Forest Inventory : A Teach-Yourself Course /
Autor principal: | |
---|---|
Autor Corporativo: | |
Formato: | eBook |
Lenguaje: | English |
Publicado: |
Berlin, Heidelberg :
Springer Berlin Heidelberg : Imprint: Springer,
1986.
|
Edición: | 1st ed. 1986. |
Materias: |
Tabla de Contenidos:
- 1 Simple Random Sampling without Replacement
- 1.1 Introduction
- 1.2 Expected Value. Estimators for Population Mean and Total
- 1.3 Population and Sample Variance
- 1.4 Variances of Estimated Population Mean and Total
- 1.5 Confidence Interval and Confidence Statement
- 1.6 Estimation of Proportions
- 1.7 Required Sample Size
- 1.8 Some General Remarks on Sample Plots
- 1.9 Numerical Examples
- 2 Stratified Random Sampling
- 2.1 Introduction
- 2.2 Unbiased Estimators for Population Mean and Total. Variances
- 2.3 Some Special Cases
- 2.4 Optimization of the Sampling Scheme
- 2.5 Confidence Intervals. Behrens-Fisher Problem
- 2.6 Gain in Precision Relative to Simple Random Sampling
- 2.7 Numerical Examples
- 3 Ratio Estimators in Simple Random Sampling
- 3.1 Introduction. Population Ratio. Ratio Estimators for Total and Mean
- 3.2 Variances
- 3.3 Confidence Interval. Precision versus SRS. Required Sample Size
- 3.4 Bias of the Ratio Estimator
- 3.5 Ratio Estimator per Species Group in Mixed Forest
- 3.6 Numerical Example
- 3.7 Combining Results of Different Samples to Obtain New Information
- 4 Ratio Estimators in Stratified Random Sampling
- 4.1 Introduction
- 4.2 The Separate Ratio Estimator
- 4.3 The Combined Ratio Estimator
- 4.4 Illustrations
- 4.5 Numerical Example
- 5 Regression Estimator
- 5.1 Introduction
- 5.2 Unbiased Estimator of Population Regression Line from Sample Data
- 5.3 Linear Regression Estimator and its Variance
- 5.4 Regression Estimator in Stratified Random Sampling
- 5.5 Numerical Example
- 6 Two-Phase Sampling or Double Sampling
- 6.1 Introduction
- 6.2 The Ratio Estimator in Double Sampling
- 6.2.1 Ratio Estimator in Double Sampling — Dependent Phases
- 6.2.2 Ratio Estimator in Double Sampling — Independent Phases
- 6.3 The Regression Estimator in Double Sampling
- 6.3.1 Regression Estimator in Double Sampling — Independent Phases
- 6.3.2 Regression Estimator in Double Sampling — Dependent Phases.
- 6.3.3 Numerical Example — Dependent Phases
- 6.4 Optimization in Double Sampling with Ratio and Regression Estimators
- 6.5 Double Sampling for Stratification
- 6.5.1 Introduction
- 6.5.2 Unbiased Estimator for Population Mean. Variance Expression
- 6.5.3 Variance Estimator
- 6.5.4 Optimization of the Sampling Scheme
- 6.5.5 Numerical Example
- 6.6 Correction for Misinterpretation in Estimating Stratum Proportions from Aerial Photographs
- 6.6.1 Derivation of Formulas
- 6.6.2 Numerical Example
- 6.7 Volume Estimation with Correction for Misinterpretation
- 6.7.1 Derivation of Formulas
- 6.7.2 Numerical Example
- 7 Continuous Forest Inventory with Partial Replacement of Sample Plots
- 7.1 Introduction
- 7.2 Definition of Symbols
- 7.3 Most Precise Unbiased Linear Estimator for Population Mean on the Second Occasion
- 7.4 Optimization of Sampling for Current Estimate
- 7.5 Estimation of Change (Growth or Drain)
- 7.6 A Compromise Sampling Scheme
- 7.7 Numerical Example
- 8 Single- and More-Stage Cluster Sampling
- 8.1 Introduction
- 8.2 Estimators in Two-Stage Sampling
- 8.2.1 Definition of Symbols
- 8.2.2 Unbiased Estimators for Population Total and Mean per SU
- 8.2.3 Unbiased Estimators in Special Cases
- 8.2.3.1 Single-Stage Cluster Sampling
- 8.2.3.2 Primary Units of Equal Size
- 8.2.3.3 Equal Within-Cluster Variances
- 8.2.3.4 Relation to Stratified Random Sampling
- 8.2.4 Ratio Estimator for Population Total and Mean per SU
- 8.3 Optimization of the Two-Stage Sampling Scheme
- 8.4 Three- and More-Stage Sampling
- 8.5 Numerical Example of Two-Stage Sampling
- 9 Single-Stage Cluster Sampling as a Research Tool
- 9.1. Introduction
- 9.2. Intracluster Correlation Coefficient
- 9.3. Variance and Intracluster Correlation
- 9.4. Measures of Heterogeneity
- 9.4.1. The Intracluster Correlation Coefficient
- 9.4.2. The C-Index
- 9.4.3. The Index of Dispersion
- 9.4.4. Numerical Example
- 9.5. Intracluster Correlation Coefficient in Terms of Anova Quantities
- 9.6. About the Optimum Sample Plot Size
- 10 Area Estimation with Systematic Dot Grids
- 10.1. Random Sampling with n Points
- 10.2. Systematic Sampling with n Points
- 10.3. Numerical Example
- 11 Sampling with Circular Plots
- 11.1. Sampling from a Fixed Grid of Squares
- 11.2. Sampling from a Population of Fixed Circles
- 11.3. Sampling with Floating Circular Plots
- 11.4. Comparison of Variances
- 12 Point Sampling
- 12.1. General Estimator
- 12.2. Specific Estimators
- 12.3. Variances
- 12.4. Sampling Near the Stand Margin
- 12.5. Required Sample Size. Choice of K. Questionable Trees
- 12.6. Numerical Example
- 12.7. A More General View at PPS-Sampling, wtr
- 13 Line Intersect Sampling
- 13.1. Introduction
- 13.2. BUFFON’s Needle Problem and Related Cases
- 13.3. Total-Estimator Based on One-line Data
- 13.4. Variance in Case of One-Line Data
- 13.5. Sampling with More Than One Line
- 13.6. Required Number and Length of Transects
- 13.7. Estimating Properties of Residual Logs in Exploited Areas
- 13.8. Estimators Based on Circular Elements
- 13.8.1. Generalization of STRAND’s Estimator
- 13.8.2. Density Estimation of Mobile Animal Populations
- 13.8.3. Biomass Estimation in Arid Regions
- 13.9. Bias in Oriented Needle Populations
- 13.10. Generalization of LIS Theory
- 13.10.1. KENDALL Projection and Expected Number of Intersections
- 13.10.2. General LIS Estimator and its Variance
- 13.10.3. Applications
- 13.11. Line Intersect Subsampling
- 14 List Sampling
- 14.1. Introduction
- 14.2. Estimation of Population Total. Variance
- 14.3. Optimum Measure of Size. Comparison with Simple Random Sampling.
- 14.4. Numerical Example
- 14.5. Two-Stage List Sampling
- 15 3-P Sampling
- 15.1. Introduction
- 15.2. The Principle of 3-P Sampling
- 15.3. Variance and Expected Value of Sample Size and its Inverse
- 15.4. Considerations about the Sample Size
- 15.5. GROSENBAUGH’s 3-P Estimators
- 15.6. Summary and Conclusions
- 15.7. Numerical Example
- 15.8. List of Equivalent Symbols
- 1. A Family of Sampling Schemes
- 2. Permutations, Variations, Combinations
- 3. Stochastic Variables
- 3.1. Stochastic Variables in General. Normal and Standard Norm. Variable
- 3.2. The Chi-Suare Distribution
- 3.3. STUDENT’s t-Distribution
- 3.4. FISHER’s F-Distribution
- 4. Stochastic Vectors and Some of their Applications
- App1.2. Distribution of the Pooled Variance in Stratified R. S.
- App1.3. Analysis of Variance in Stratified Random Sampling
- App1.4. Analysis of Variance in 2-Stage Sampling
- Appl.5. Proof of STEIN’s Method for Estimating Required Sample size
- 5. Covariance, Correlation, Regression
- 6. The LAGRANGE Multiplier Method of Optimization
- 7. Expected Value and Variance in Multivariate Distributions
- 8. Hypergeometric, Multinomial and Binomial Distributions
- 9. The Most Precise Unbiased Linear Estimator of a Parameter X, based on a Number of Independent Unbiased Estimates of Different Precision
- 10. Variance Formulas for Sums, Differences, Products and Ratios
- 11. The Random Forest (POISSON FOREST)
- 12. Derivation of the Identity used in List Sampling
- 13. Expanding a Function in a TAYLOR Series
- 14. About Double Sums
- 15. Exercises
- References.