Offshore and Coastal Modelling

Detalles Bibliográficos
Autor Corporativo: SpringerLink (Online service)
Otros Autores: Dyke, P.P.G. (Editor ), Moscardini, A.O. (Editor ), Robson, E.H. (Editor )
Formato: eBook
Lenguaje:English
Publicado: New York, NY : Springer New York : Imprint: Springer, 1985.
Edición:1st ed. 1985.
Colección:Coastal and Estuarine Studies, 12
Materias:
Acceso en línea:https://doi.org/10.1007/978-1-4684-8001-6
LEADER 05735nam a22003615i 4500
001 978-1-4684-8001-6
005 20191024202221.0
007 cr nn 008mamaa
008 121227s1985 xxu| s |||| 0|eng d
020 |a 9781468480016 
024 7 |a 10.1007/978-1-4684-8001-6  |2 doi 
040 |a Sistema de Bibliotecas del Tecnológico de Costa Rica 
245 1 0 |a Offshore and Coastal Modelling  |c edited by P.P.G. Dyke, A.O. Moscardini, E.H. Robson. 
250 |a 1st ed. 1985. 
260 # # |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 1985. 
300 |a IX, 399 p. 11 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Coastal and Estuarine Studies,  |v 12 
505 0 |a 1 Modelling in Offshore and Coastal Engineering -- 2 Tides, Storm Surges and Coastal Circulations -- 2.1 Bathymetry -- 2.2 Tides and Tidal Currents -- 2.3 North Sea Storm Surges -- 2.4 Two-dimensional Numerical Storm-surge Models -- 2.5 Surge Forecasting -- 2.6 Three-dimensional Models -- 2.7 Vertical Structure of Current -- 3 Modelling Storm Surge Current Structure -- 3.1 Introduction -- 3.2 Spectral Model Formulation -- 3.3 Form of Vertical Eddy Viscosity -- 3.4 A 3-D Simulation Model of Surge Currents on the North-West European Shelf -- 3.5 A Mechanistic Model of Wind Induced Current Profiles -- 3.6 Concluding Remarks -- 4 Optimally Controlled Hydrodynamics for Tidal Power from the Severn Estuary -- 4.1 Introduction -- 4.2 Hydrodynamics -- 4.3 Optimal Control -- 5 Numerical Modelling of Storm Surges in River Estuaries -- 5.1 Introduction -- 5.2 Points to note in Modelling -- 5.3 The Aims of a Mathematical Model of Storm Surges -- 5.4 The Differential Equations of the Model -- 5.5 Computational Aspects -- 5.6 Numerical Results: The Storm of 1953 -- 5.7 Summary -- 6 Coastal Sediment Modelling -- 6.1 Introduction -- 6.2 Need for Computer Models -- 6.3 Model Types -- 6.4 Conclusions -- 7 The Application of Ray Methods to Wave Refraction Studies -- 7.1 Introduction -- 7.2 Ray Models -- 7.3 Application of the Ray Model, a Simple Case -- 7.4 A Study including Wave Breaking -- 7.5 A Study including Diffraction and Reflection -- 7.6 Future Developments -- 8 A Model for Surface Wave Growth -- 8.1 Introduction -- 8.2 Formulation of the Problem -- 8.3 First Order Solution -- 8.4 Second Order Solution -- 8.5 Third Order Solution -- 8.6 Wind Shear Stress -- 8.7 Conclusion -- 9 Power Take-Off and Output from the Sea-Lanchester Clam Wave Energy Device -- 9.1 Introduction -- 9.2 Experimental Tests -- 9.3 Power Take-off Simulation -- 10 Numerical Modelling of Ilfracombe Seawall -- 10.1 Introduction -- 10.2 Finite Element Modelling of Ilfracombe Seawall -- 10.3 Need for a Finite Element Model Approach -- 10.4 Conclusions -- 11 Modelling The Plan Shape of Shingle Beaches -- 11.1 Introduction -- 11.2 General Considerations when Modelling Beach Changes -- 11.3 Derivation of an Alongshore Transport Formula -- 11.4 Incipient Motion of Shingle -- 11.5 Discussion -- 11.6 Conclusions -- 12 Mathematical Modelling Applications for Offshore Structures -- 12.1 Introduction -- 12.2 Operational, Environmental and Foundation Condition -- 12.3 Structural Concepts -- 12.4 Fabrication -- 12.5 Construction -- 12.6 Load Out -- 12.7 Tow Out -- 12.8 Installation -- 12.9 Mathematical Modelling in Platform Design -- 12.10 Conclusions -- 13 Mathematical Model of A Marine Hose-String at a Buoy: Part 1, Static Problem -- 13.1 Introduction -- 13.2 Assumptions -- 13.3 Equations -- 13.4 Boundary Conditions -- 13.5 Hose Radius -- 13.6 The Load -- 13.7 Method of Solution -- 13.8 Analytical Solutions for Simplified Models -- 13.9 Results -- 13.10 Applications -- 13.11 Conclusions -- 14 Mathematical Model of a Marine Hose-String at a Buoy: Part 2, Dynamic Problem -- 14.1 Introduction -- 14.2 Equation of Motion -- 14.3 Boundary Conditions -- 14.4 Method of Solution -- 14.5 Flanges -- 14.6 Comparison of Analytical and Numerical Results -- 14.7 Numerical Results -- 14.8 Conclusions -- 15 The Design of Catenary Mooring Systems for Offshore Vessels -- 15.1 Introduction -- 15.2 Representation of the Environment -- 15.3 Mathematical Model of Moored Vessel -- 15.4 Calculations of Environmental Forces and Moments -- 15.5 Calculation of Mooring Forces and Moments -- 15.6 Static Analysis -- 15.7 Response of Vessel to Wind Gusting and Wave Drift Action -- 15.8 Conclusions -- 16 Some Problems Involving Umbilicals, Cables and Pipes -- 16.1 Introduction -- 16.2 The Statics of Cables and Pipes -- 16.3 Hydrodynamic Forces -- 16.4 Analytical Solutions -- 16.5 Typical Problems and Numerical Solutions -- 16.6 Final Comments -- 17 Mathematical Modelling in Offshore Corrosion -- 17.1 Introduction -- 17.2 General Mass Transport Theory -- 17.3 Mathematical Modelling of the Electrochemistry in Cracks -- 17.4 Mathematical Modelling in Cathodic Protection Offshore -- 17.5 Mathematical Modelling of Crevice Corrosion -- 17.6 Mathematical Modelling of Corrosion in Concrete -- 17.7 Conclusions -- 18 Fatigue Crack Growth Predictions in Tubular Welded Joints -- 18.1 Introduction -- 18.2 Fatigue Crack Growth Behaviour of Tubular Joints -- 18.3 Theoretical Analysis of Crack Growth -- 18.4 Conclusions. 
650 0 |a Ecology . 
650 0 |a Geology. 
650 0 |a Geotechnical engineering. 
650 1 4 |a Ecology. 
650 2 4 |a Geology. 
650 2 4 |a Geotechnical Engineering & Applied Earth Sciences. 
700 1 |a Dyke, P.P.G.  |e editor. 
700 1 |a Moscardini, A.O.  |e editor. 
700 1 |a Robson, E.H.  |e editor. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
856 4 0 |u https://doi.org/10.1007/978-1-4684-8001-6