Machine Learning in Document Analysis and Recognition
Corporate Author: | |
---|---|
Other Authors: | , |
Format: | eBook |
Language: | English |
Published: |
Berlin, Heidelberg :
Springer Berlin Heidelberg : Imprint: Springer,
2008.
|
Edition: | 1st ed. 2008. |
Series: | Studies in Computational Intelligence,
90 |
Subjects: | |
Online Access: | https://doi.org/10.1007/978-3-540-76280-5 |
Table of Contents:
- to Document Analysis and Recognition
- Structure Extraction in Printed Documents Using Neural Approaches
- Machine Learning for Reading Order Detection in Document Image Understanding
- Decision-Based Specification and Comparison of Table Recognition Algorithms
- Machine Learning for Digital Document Processing: from Layout Analysis to Metadata Extraction
- Classification and Learning Methods for Character Recognition: Advances and Remaining Problems
- Combining Classifiers with Informational Confidence
- Self-Organizing Maps for Clustering in Document Image Analysis
- Adaptive and Interactive Approaches to Document Analysis
- Cursive Character Segmentation Using Neural Network Techniques
- Multiple Hypotheses Document Analysis
- Learning Matching Score Dependencies for Classifier Combination
- Perturbation Models for Generating Synthetic Training Data in Handwriting Recognition
- Review of Classifier Combination Methods
- Machine Learning for Signature Verification
- Off-line Writer Identification and Verification Using Gaussian Mixture Models.