Reducibility of Schrödinger operators on multilayer graphs /

A local defect in an atomic structure can engender embedded eigenvalues when the associated Schrödinger operator is either block reducible or Fermi reducible, and having multilayer structures appears to be typically necessary for obtaining such types of reducibility. Discrete and quantum graph mode...

Descripción completa

Detalles Bibliográficos
Autor principal: Villalobos Alvarado, Jorge 1993- (Autor/a)
Formato: Tesis Libro
Lenguaje:English
Publicado: Louisiana, 2024.
Materias:
LEADER 02226nam a2200277 a 4500
001 000735890
005 20241108112150.0
008 241024s2024 xxua grm ||||||eng d
040 |a  Sistema de Bibliotecas de Universidad de Costa Rica  
099 9 |a TFG 49080 
100 1 |a Villalobos Alvarado, Jorge  |d 1993-  |e Autor/a 
245 1 0 |a Reducibility of Schrödinger operators on multilayer graphs /  |c Jorge Villalobos Alvarado. 
260 |a Louisiana,  |c 2024. 
300 |a vii, 85 hojas :  |b ilustraciones (principalmente a color). 
502 |a Thesis (doctor of philosophy)--Louisiana State University. Agricultural and Mechanical Collage, 2024 
520 3 |a A local defect in an atomic structure can engender embedded eigenvalues when the associated Schrödinger operator is either block reducible or Fermi reducible, and having multilayer structures appears to be typically necessary for obtaining such types of reducibility. Discrete and quantum graph models are commonly used in this context as they often capture the relevant features of the physical system in consideration. This dissertation lays out the framework for studying different types of multilayer discrete and quantum graphs that enjoy block or Fermi reducibility. Schrödinger operators with both electric and magnetic potentials are considered. We go on to construct a discrete model of AA-stacked bilayer graphene with embedded eigenvalues and prove that the corresponding bound states can exist stably within the region of continuous spectrum with respect to variations of a perpendicular magnetic field. This is accomplished by creating a defect that is compatible with the interlayer coupling, thereby shielding the bound states from the effects of the continuous spectrum, which varies erratically in a pattern known as the Hofstadter butterfly. 
590 |a Se considera un Trabajo Final de Graduación del Sistema de Estudios de Posgrado, según oficio no. OAICE-1637-2024 
650 0 7 |a OPERADOR DE SCHRODINGER 
650 0 7 |a TEORIA DE GRAFOS 
650 0 7 |a TEORÍA DEL CAMPO CUÁNTICO 
650 0 0 |a SUPERFICIES DE FERMI 
909 |a OAICE 
900 |a 2024-O 
921 |a tesis doctoral 
916 |a Centro Catalográfico 
949 |a ACC -JTG