What is mathematics / Richard, Courant

Preface to first editon, preface to second edition, how to use the book, weat is mathematics, the natural numbers introduccion; calculation with integers, laws of arithmetic, the representation of integers computation in systems otber than the decimal, the infinnitude of the number, system, mathem...

Descripción completa

Detalles Bibliográficos
Autor principal: Courant, Richard [et. al]
Formato: Libro
Lenguaje:Spanish
Publicado: Estados Unidos de América: oxfrod university press 1941
Edición:1
Materias:
LEADER 03142nam a2200229i 44500
003 OSt
005 20240116151427.0
008 211129b |||||||| |||| 00| 0 spa d
040 |a Sistema de Bibliotecas de la Universidad de las Regiones Autónomas de la Costa Caribe Nicaragüense 
080 |a 510 C83 
100 |a Courant, Richard [et. al]  |9 8720 
245 1 0 |a What is mathematics / Richard, Courant  
250 |a 1 
260 |a Estados Unidos de América: oxfrod university press  |c 1941 
300 |a 521 P. 
504 |a  Index Graphic 
520 |a Preface to first editon, preface to second edition, how to use the book, weat is mathematics, the natural numbers introduccion; calculation with integers, laws of arithmetic, the representation of integers computation in systems otber than the decimal, the infinnitude of the number, system, mathematical induction,the principle of mathematical induction, the arithmetical progrecion, the geometrical progression, the sum of the first n squares, an important inequality, the binomial theorem, further remarks on mathematical induction, suplement to chepter the theory of numbers; the prime numbers, fundamental facts, the distribution of the primes, formulas producing primes, b, primes in arithmetical progressions, e, the prime number theorem , d, two unsolved problems concerning prime number, congruences, general concepts, fermat's quadratic residues, pythagorean number and fermat' s last theorem, te euclidean algorithm, general theory, application to the fundamental theorem of arithmetic, euler's function, fermat's theorem again, continued fractions, diophantine equations; the number, system of mathematics, the rational numbers, rational numbers a device for measuring, intrinsic need for the rational numbers principle of generalization, geometrical interpretation of rational numbers, incommensurables segments, irrational numbers, and the concept of limit, introduction, decimal fractions, infinite decimals, limits, infinite geometrical series, rational numbers and periodic decimals, general definition of irrational numbers by nested intervals, alternative methods of defining irrational numders, dedekind cuts, remarks on analytic geometry, the basic principle, equations of lines and curves, geometrical constructions, the algebre of number, more about inversion and its applications, invariance of angles, families of cireles, application to the problem of apollonius, repeated reflrctions; projective geometry, axiomatics, non-euclidean geometries, classification of geometrical properties, invariance under, transformations, projective transformation; topology, the five color theorem, the jordar curve theorem for polygons, thefundametal theorem of algebra; functions and limits, functions, continuity, functions of several variables functions and transformations. 
590 |a Col. Educ 
650 |a 1. MATEMATICAS 2. WHAT IS MATHEMATICS 3. EDUCATIÓN  |9 40320 
942 |c BK  |2 ddc 
999 |c 41763  |d 41763 
952 |0 2  |1 0  |2 ddc  |4 0  |6 6660_000000000000000_C1  |7 0  |8 CE  |9 938  |a BUBLUF  |b BUBLUF  |c STAFF  |d 2021-11-29  |i 6660  |o 6660 C1  |p 6660 C1  |r 2021-11-29  |t C1  |w 2021-11-29  |y BK