Mass transfer at the electrode tip during gas metal arc welding /

The main objective of this investigation is to study the evolution of a drop of molten metal from the electrode tip during Gas Metal Arc Welding (GMAW) for different welding conditions. These welding conditions are characterized by the current density distribution at the free surface of the pendant...

Descripción completa

Detalles Bibliográficos
Autor principal: Portillo López, Dimas Eloy (sustentante)
Otros Autores: Moon, T. J. (asesor)
Formato: Tesis Libro
Lenguaje:English
Publicado: Texas, E.E.U.U. : The University of Texas, 1995
Materias:
LEADER 04982nam a2200505 i 4500
003 PA-PaUTB
005 20240620172754.0
007 ta
008 240619s1995 xxuad||frm||| 00| | eng d
040 |a Sistema de Bibliotecas de la Universidad Tecnológica de Panamá 
041 0 |h eng 
082 0 4 |a 671.5212  |b P837  |2 21  |q PA-PaUTB 
100 1 |a Portillo López, Dimas Eloy,  |e sustentante  |9 2684 
245 1 0 |a Mass transfer at the electrode tip during gas metal arc welding /  |c Dimas Eloy Portillo López ; asesor Tess J. Moon. 
264 3 1 |a Texas, E.E.U.U. :  |b The University of Texas,  |c 1995 
336 |2 rdacontent  |a texto  |b txt 
337 |2 rdamedia  |a no mediado  |b n 
338 |2 rdacarrier  |a volumen  |b nc 
500 |a Doctor of Philosophy in Mechanical Engineering. The University of Texas at Autin. 
502 |a Tesis (  |b Doctorado). --  |c The University of Texas. Faculty of the graduate school. Doctor of Philosophy in Mechanical Engineering,  |d 1995. 
504 |a Incluye referencias bibliográficas, páginas 496-501 y apéndice, páginas 219-495. 
505 0 |a Chapter 1. Introduction. -- Chapter 2. Literature review. -- Chapter 3. Fluid flow in the molten region of the electrode tip. -- Chapter 4. Electromagnetic phenomena in a pendant drop of molten metal at the electrode tip. -- Chapter 5. Heat transfer at the electrode tip. -- Chapter 6. Solution Procedure. -- Chapter 7. Results. -- Chapter 8. Conclusions and recommendations. -- Appendix. -- References. 
506 1 |a No se presta a domicilio. 
520 3 |a The main objective of this investigation is to study the evolution of a drop of molten metal from the electrode tip during Gas Metal Arc Welding (GMAW) for different welding conditions. These welding conditions are characterized by the current density distribution at the free surface of the pendant drop, the electric current level, the electrode feed velocity, and the surface tension coefficient. The drop diameter, average drop velocity, and evolution time are calculated for different combinations of the former parameters and compared with predicted values from the static force balance theory, the pinch instability theory, and experimental results. The mixed, velocity-pressure, Galerkin finite element method is used to solve the time dependent system of nonlinear governing equations. A Lagrangian-Eulerian formulation of the system of equations is required to account for the continuous deformation of the liquid domain. Grid nodes at the free surface of the drop are constrained to move normal to this interface. Also, no fluid is allowed to cross the free surface since evaporation has been neglected. Although the energy equation is presented here for completeness, it is not solved in order to reduce the complexity of the computer program. Therefore, material properties are evaluated at a representative reference temperature level. The results of this research will help to demonstrate the welding parameters which have a greater effect upon the size and dynamic characteristics of the detaching drops. The results of this mathematical model show that the current density distribution plays a major role in determining the size of the drops detaching from the electrode tip. Meanwhile, the electric current level and the surface tension coefficient have more influence in the velocity and evolution time of the drops. 
541 1 |a Dimas Eloy Portillo López.  |c DUTP  |d Recibido: 1995/07/15.  |e 144508.  |h $100.00. 
650 1 7 |a Mass transfer  |2 LEMB  |9 8289 
650 2 7 |a Transferencia de masa  |2 LEMB  |9 815 
650 2 7 |a Galerkin methods  |2 LEMB  |9 8291 
650 2 7 |a Métodos de Galerkin  |2 LEMB  |9 8292 
650 2 7 |a Electric welding  |2 LEMB  |9 8293 
650 2 7 |a Soldadura eléctrica  |2 LEMB  |9 222 
650 2 7 |a Electric currents  |2 LEMB  |9 8294 
650 2 7 |a Corrientes eléctricas  |2 LEMB  |9 986 
650 2 7 |a Mechanical engineering  |2 LEMB  |9 8295 
650 2 7 |a Ingeniería mecánica  |2 LEMB  |9 126 
650 2 7 |a Tesis y disertaciones académicas  |2 LEMB  |9 604 
653 0 |a Doctor of Philosophy in Mechanical Engineering 
700 1 |a Moon, T. J.,  |q (Tess J.)  |e asesor  |9 8288 
942 |2 ddc  |c TESISD 
946 |a 44903  |b Cleofe Galindo J.  |c 44903  |d Cleofe Galindo J. 
999 |c 144508  |d 144508 
952 |0 0  |1 0  |2 ddc  |4 0  |6 TD_671_521200000000000_P837_1995  |7 0  |8 TESDOC  |9 179925  |a BUT  |b BUT  |d 2024-06-19  |e DUTP  |l 0  |o TD 671.5212 P837 1995  |p 80012933  |r 2024-06-19  |t t.1 e.1  |w 2024-06-19  |y TESISD 
952 |0 0  |1 0  |2 ddc  |4 0  |6 TD_671_521200000000000_P837_1995  |7 0  |8 TESDOC  |9 179933  |a BUT  |b BUT  |d 2024-06-19  |e DUTP  |g 100.00  |l 0  |o TD 671.5212 P837 1995  |p 800120832  |r 2024-06-20  |t v.1 e.2  |w 2024-06-20  |y TESISD 
952 |0 0  |1 0  |2 ddc  |4 0  |6 TD_671_521200000000000_P837_1995  |7 0  |8 TESDOC  |9 179934  |a BUT  |b BUT  |d 2024-06-19  |e DUTP  |g 100.00  |l 0  |o TD 671.5212 P837 1995  |p 80012934  |r 2024-06-20  |t t.2 e.1  |w 2024-06-20  |y TESISD 
952 |0 0  |1 0  |2 ddc  |4 0  |6 TD_671_521200000000000_P837_1995  |7 0  |8 TESDOC  |9 179935  |a BUT  |b BUT  |d 2024-06-19  |e DUTP  |g 100.00  |l 0  |o TD 671.5212 P837 1995  |p 800120833  |r 2024-06-20  |t v.2 e.2  |w 2024-06-20  |y TESISD